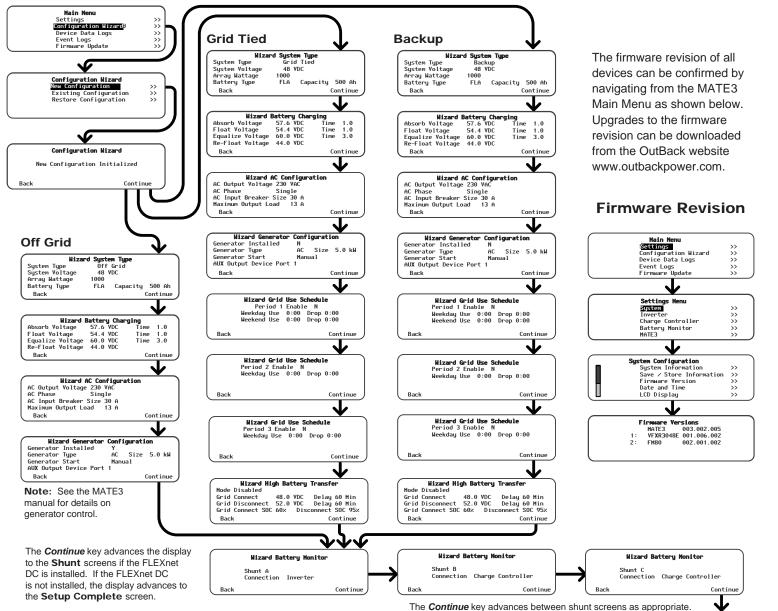
Quick Start Guide

Configuration Wizard

The MATE3 Configuration Wizard allows quick setup of parameters that apply to all systems. The Configuration Wizard is reached from the MATE3 Main Menu as shown below.



CAUTION: Equipment Damage

These procedures should be done by a qualified installer who is trained on programming inverter power systems. Failure to set accurate parameters for the system could potentially cause equipment damage. Damage caused by inaccurate programming is not covered by the limited warranty for the system.

Check the firmware revision of all OutBack devices before use. The MATE3 system display must be revision 003.002.xxx or higher. If the revision is lower, the MATE3 and inverter may not communicate or operate correctly.

After the last shunt screen, it advances the display to the **Setup Complete** screen.

Supports the OPTICS RE[™] online tool for a cloud-based remote monitoring and control application. Please refer to the OPTICS RE setup instructions, or visit www.outbackpower.com to download.

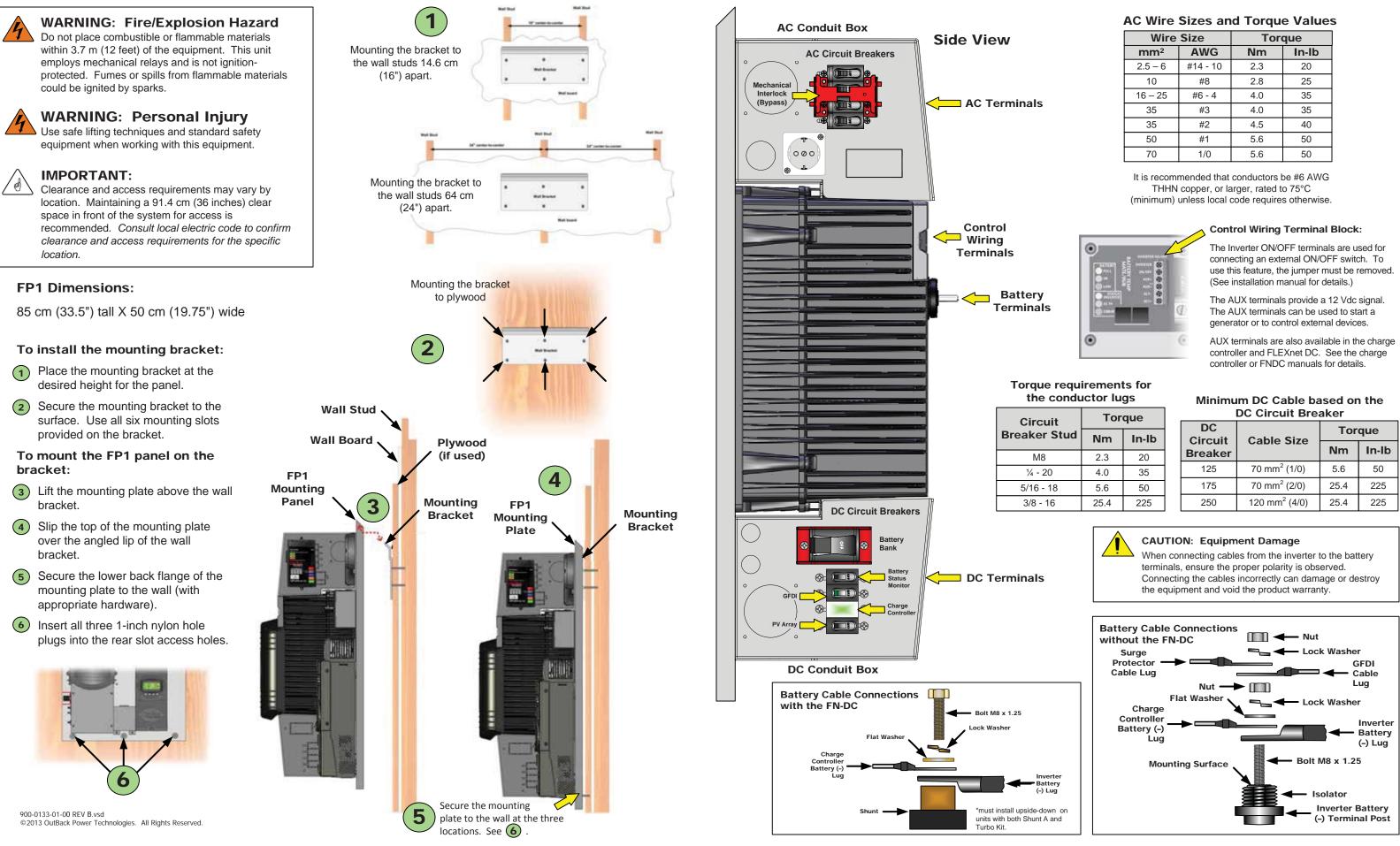
LED Indicators on the Inverter				
Battery Status LED Indicators				
Color	12 V Inverter	24 V Inverter	48 V Inverter	
Green	12.5 Vdc or higher	25.0 Vdc or higher	50.0 Vdc or higher	
Yellow	11.5 to 12.4 Vdc	23.0 to 24.8 Vdc	46.0 to 49.6 Vdc	
Red	11.4 Vdc or lower	22.8 Vdc or lower	45.6 Vdc or lower	
Inverter Status LED Indicators				
Green	Inverter on (solid) or standing by (flash)			
Yellow	AC source in use (solid) or standing by (flash)			
Red	Inverter error or warning (see manual)			

*OFLEX*power[®]ONE

N	lajor Components
FLE>	(power System Products
Inverter/	Charger
AC Con	duit Box (with Bypass Assembly)
DC Con	duit Box (with Inverter Disconnect
System	Display and Controller
PV Char	ge Controller
Commu	nications Manager
FLEXne	t DC Monitor (FN-DC)
Remote	Temperature Sensor (RTS)
Surge P	rotector
Custon	ner-Supplied Components
AC Sou	rce Utility Grid, or AC Generator
Main Ele	
Main Ele (or c	AC Generator
Main Ele (or c	AC Generator ectrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel)
Main Ele (or Electrica (Loa Battery Photovo	AC Generator ectrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel)
Main Ele (or Electrica (Loa Battery Photovo	AC Generator ectrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel) Bank Ditaic (PV) Array
Main Ele (or Electrica (Loa Battery Photovo	AC Generator ectrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel) Bank Ditaic (PV) Array
Main Ele (or Electrica (Loa Battery Photovo	AC Generator ectrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel) Bank Ditaic (PV) Array h PV Combiner Box)
Main Ele (or Electrica (Loa Battery Photovo (wit	AC Generator ectrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel) Bank Ditaic (PV) Array h PV Combiner Box) FN-DC LED Indicators
Main Ele (or d Electrica (Loa Battery Photovo (wit	AC Generator ectrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel) Bank oltaic (PV) Array h PV Combiner Box) FN-DC LED Indicators Battery State-of-Charge
Main Ele (or d Electrica (Loa Battery Photovo (wit	AC Generator actrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel) Bank Ditaic (PV) Array h PV Combiner Box) FN-DC LED Indicators Battery State-of-Charge > 90% (blinks if charge parameters are met)
Main Ele (or d Electrica (Loa Battery Photovo (wit	AC Generator ectrical Panel overcurrent device for AC source) al Distribution Subpanel ad Panel) Bank Ditaic (PV) Array h PV Combiner Box) FN-DC LED Indicators Battery State-of-Charge > 90% (blinks if charge parameters are met) ≥ 80%

Surge Protector LEDs			
Active	Error	Phase	
Yellow	Red	DC	
Yellow	Red	AC IN	
Yellow	Red	AC OUT	

IMPORTANT: Not intended for use with life support equipment.


OPTICS RE Compatible

Mounting

Wire Sizes/Torque **Requirements**

OFLEXpower[®]ONE

		-		
Wire Size		Torque		
mm ²	AWG	Nm	In-lb	
2.5 – 6	#14 - 10	2.3	20	
10	#8	2.8	25	
16 – 25	#6 - 4	4.0	35	
35	#3	4.0	35	
35	#2	4.5	40	
50	#1	5.6	50	
70	1/0	5.6	50	

rcuit	Torque		
er Stud	Nm	In-lb	
M8	2.3	20	
- 20	4.0	35	
6 - 18	5.6	50	
3 - 16	25.4	225	

DC Circuit	Cable Size	Torque	
Breaker	Cable Size	Nm	In-lb
125	70 mm ² (1/0)	5.6	50
175	70 mm² (2/0)	25.4	225
250	120 mm ² (4/0)	25.4	225

Energize/Startup Procedures

De-energize/Shutdown Procedures

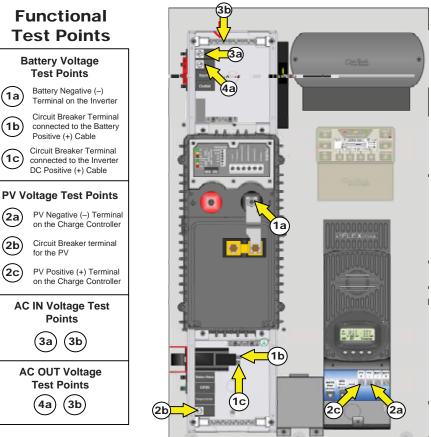
Pre-startup Procedures

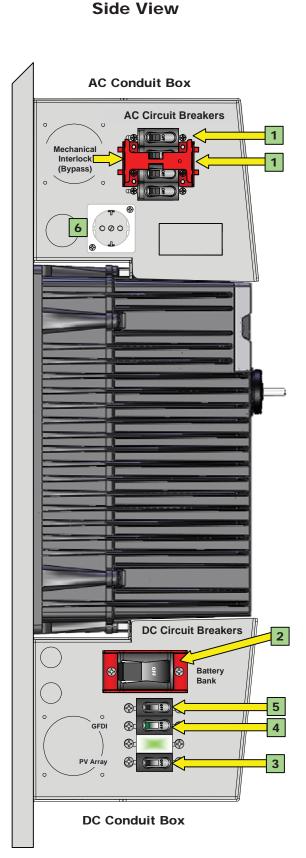
- After opening the AC and DC enclosures:
- 1. Double-check all wiring connections.
- 2. Inspect the enclosure to ensure no tools or debris has been left inside.

Side View

AC Conduit Box

- 3. Disconnect all AC loads at the backup (or critical) load panel.
- 4. Disconnect the AC input feed to the FLEXpower ONE at the source.
- 5. Place the mechanical interlock in the normal (non-bypass) position.


To energize or start up the system:


1. Using a digital voltmeter (DVM), verify 12, 24, or 48 Vdc on the battery terminals by placing the DVM leads on **1a** and **1b**. Confirm that the voltage is correct for the inverter model. Confirm the polarity.

Incorrect battery polarity will damage the equipment.

- 2. Verify the voltage on the PV terminal is in the correct range of open-circuit voltage by placing the DVM leads on (2a) and (2b). Confirm the polarity.
- 3. Connect the AC source. Verify 230 Vac on the AC input circuit breakers by placing the DVM leads on (3a) and (3b).
- 4. Replace the covers on the AC and DC enclosures.
- 5. Turn on (close) the GFDI circuit breaker. 1
- 6. Turn on (close) the PV input circuit breakers. 2
- 7. Turn on (close) the DC circuit breaker from the battery bank to the inverter. 3
- 8. Turn on (close) the FN-DC circuit breaker. 4
- 9. Check the system display or LED indicators. Ensure the inverter is in the ON state. The factory default state for FXR inverters is OFF.
- 10. Turn on (close) the AC output and AC outlet circuit breakers. 5
- 11. If an electrical outlet has been installed, verify 230 Vac on the AC output by placing the DVM leads in the slots of the outlet.
- 12. Turn on (close) the AC input circuit breakers. 7
- 13. Turn on the AC disconnects at the load panel and test the loads.

WARNING: Lethal Voltage

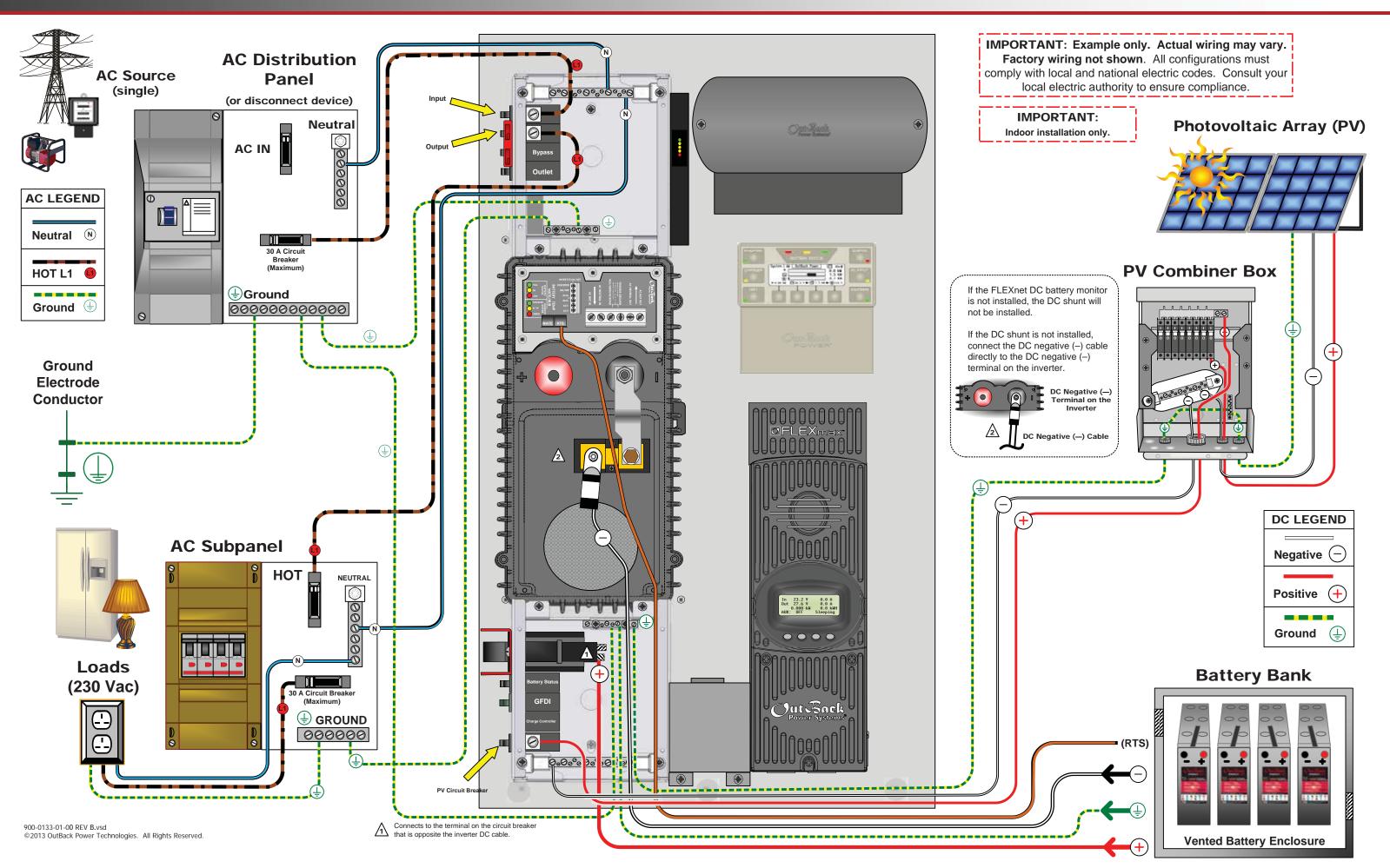
Review the system configuration to identify all possible sources of energy. Ensure ALL sources of power are disconnected before performing any installation or maintenance on this equipment. Confirm that the terminals are de-energized using a validated voltmeter (rated for a minimum 1000 Vac and 1000 Vdc) to verify the de-energized condition.

WARNING: Lethal Voltage

The numbered steps will remove power from the inverter and charge controller. However, sources of energy may still be present inside the GSLC and other locations. To ensure absolute safety, disconnect ALL power connections at the source.

WARNING: Burn Hazard

Internal parts can become hot during operation. Do not remove the cover during operation or touch any internal parts. Be sure to allow them sufficient time to cool down before attempting to perform any maintenance.


To de-energize or shut down the OutBack devices:

- 1. Turn off (open) the AC circuit breakers. 1
- 2. Turn off (open) the DC circuit breaker for the battery.
- 3. Turn off (open) the PV circuit breaker. 3
- 4. Turn off (open) the GFDI circuit breaker.
- 5. Turn off (open) the FN-DC circuit breaker. 5
- 6. *Verify 0 Vdc on the DC input terminals of the inverter by placing the voltmeter leads on (1a) and (1c).
- 7. *Verify 0 Vdc on the PV terminal by placing the voltmeter leads on (2a) and (2c).
- Verify 0 Vac on the AC output circuit breakers by placing the voltmeter leads in the slots of the AC outlet, if an outlet has been installed.

*This can also be tested by placing the leads on (4a) and (4b).

*See the Functional Test Points key that is included with the Startup Procedures.

General Wiring

*OFLEX*power[®]ONE